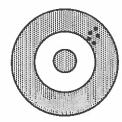
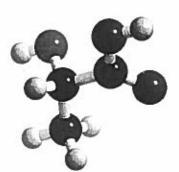
Spring Final 2017 Review

MEASUREMENTS


Write in the number of significant figures for each of the following measurements:

Combine the masses 0.0562 kg, 124.213 g and 1635 mg. The answer should be reported as: ______ g Convert to units.

A 5.75 mL sample of mercury has a measured mass of 77.05 g. The density is 13.4 5/ml 3.75



Mercury's accepted density is 13.53 g·mL⁻¹. The % error in your measurement is:

Is this person accurate? \nearrow ls the person precise? \checkmark

MATTER

This molecule contains 3 elements and 12 atoms.

The molecular formula for this substance is: _C, H, O,

Calculate the number of seconds in 5.25 years using unit analysis: (1 year = 365.25 days)

A calculator displays the answer to a problem as 53.29841 Report this answer to:

53.298 5 significant figures

53.3 3 significant figures

50 1 significant figure

MEASURING CHEMICALS

Calculate the molar mass of Ba(NO₃)₂.

Calculate the percent composition of each element in the following compound.

Ba(NO ₃) ₂	Ba = 52. 6 % =	137.37	N = 10. 75 =	28 261.33	0= 36.77=	96 261. 33
-----------------------------------	----------------	--------	--------------	-----------	-----------	---------------

Write the formula for ionic compounds made from these ions:

Name	Cation	Anion	Formula		
sodium phosphate	Nat	bors_	Naspon		
stannic chloride	Snat	C1-	Sn <14		
aluminum hydroxide	A1 3+	OH-	A1 (OH)3		
ammonium sulfate	NHyT	Soyt	(NH4)2504		

MOLE PROBLEMS

Solve the following mole problems:

How many molecules of CO₂ (MM = 44.0 g/mol) are in 17.75 grams of CO₂?

$$|7.759 \, co_2| \, \frac{|mol|}{44.0} \, \frac{6.022 \, x_1.0^{23}}{1mol} \, = \, 2.43 \, x_1.0^{23} \, \text{ and } \, co_2$$

What volume (in Liters) does 20.0 grams of butane, C_4H_{10} , occupy at STP? (MM $C_4H_{10} = 58.14$ g/mol)

									ı
- 1	ist the 7 diatomic elements:	Hz	02	Nz	Cl2	3-2	In	FZ	

REACTIONS

Balance these equations and classify their type (single replacement, double replacement, etc.)

$$C_5H_{12} + 8O_2 \rightarrow 5CO_2 + 6H_2O$$

Classify this reaction: Comb.

$$2H_2O_2 \rightarrow 2H_2O + O_2$$

$$2AgNO_3 + K_2CO_3 \rightarrow Ag_2CO_3 + 2KNO_3$$
 Classify this reaction:

$$55.25$$
 12.80 $\times 9$ $N_2(g) + 3 H_2(g) \rightarrow 2 NH_3(g)$ 28.014 6.048 34.062

How many grams of NH₃(g) is formed when 12.80 grams of H₂(g) reacts with 55.25 grams of N₂(g)?

$$\frac{5525}{28.014} : 1.97 = \frac{X}{34.062} \qquad X = \left[67.19 \text{ NH}_{3} \right]$$

How many grams of CO₂ is produced when 11.0 g of C₅H₁₂ burn?

$$\frac{11.09 c_5 H_{12}}{72.151} = \frac{X}{220.05}$$

EMPIRICAL/MOLECULAR FORMULAS

Empirical Formulas:

A substance is 33.33% carbon, 7.47% hydrogen, and 59.20% oxygen.

What is its empirical formula? C₃ H₈ b₄

33.33
$$g = \frac{2.77}{12.011} = \frac{2.77}{2.77} = \frac{1}{2.77} = \frac{3}{2.67} = \frac{3}{2.67}$$

The molecular weight of the above substance is 432 g/mol. What is the molecular formula?

SOLUBILITY/NET IONICS

Circle the precipitates: PbI2 Ba(OH)2 Ag2CO3 CaF2 K2SO3 (NH4)2S

List the strong acids: HNO3 H2SO4 H21 HB- HI

Write the balanced molecular, total ionic, and net ionic equation for:

Solutions of acetic acid and sodium nitrite are mixed.

Solutions of aluminum nitrate and sodium oxalate.

$$2 \text{ Al } (N_{03})_{3} (aq) = 3 N_{02} C_{2}O_{4} (aq) \longrightarrow \text{Al}_{2}(C_{2}O_{4})_{3} (s) + 6 N_{0} N_{03} (aq)$$

$$2 \text{ Al } (N_{03})_{3} (aq) = 3 N_{02} C_{2}O_{4} (aq) \longrightarrow \text{Al}_{2}(C_{2}O_{4})_{3} (s) + 6 N_{0} N_{03} (aq)$$

$$2 \text{ Al } (N_{03})_{3} (aq) = 3 N_{02} C_{2}O_{4} (aq) \longrightarrow \text{Al}_{2}(C_{2}O_{4})_{3} (s) + 6 N_{0} N_{03} (aq)$$

$$2 \text{ Al } (3^{2} (aq) + 3 N_{03} (aq) + 6 N_{0} N_{03} (aq) \longrightarrow \text{Al}_{2}(C_{2}O_{4})_{3} (s)$$

$$2 \text{ Al } (3^{2} (aq) + 3 N_{03} (aq) \longrightarrow \text{Al}_{2}(C_{2}O_{4})_{3} (s)$$

$$2 \text{ Al } (3^{2} (aq) + 3 N_{03} (aq) \longrightarrow \text{Al}_{2}(C_{2}O_{4})_{3} (s)$$

REDOX REACTIONS

Write the balanced net ionic equation for:

Aluminum metal is added to a solution of silver nitrate.

LOSE

What substance is being **oxidized**? A Which **atom** is being **reduced**? Ag

What is the oxidizing agent? ____Ag +

What is the oxidation number of N in the nitrate ion, $\underline{N}O_3^-$

$$+5^{2}$$
 \times $+3(-2) = -1$ \times $+5$

ENERGY IN REACTIONS

When solutions of NaOH and HCl are added together, the mixture gets hot.

50.0 mL of 2.00 M NaOH and 50.0 mL of 2.00 M HCl are mixed.

Both solutions are at room temperature, 18.0°C, and the final temperature of the mixture is 32.0°C.

a) Calculate the heat released by the reaction.

b) Calculate the moles of H₂O formed.

c) Calculate the ΔH of neutralization in kJ/mol.

ENERGY & HESS'S LAW

Calculate the standard enthalpy of the reaction for the process

$$3NO(g) \rightarrow N_2O(g) + NO_2(g)$$

Using the standard enthalpies of formation (ΔH_f°) NO = 90 kJ/mol, N₂O = 82.1 kJ/mol, NO₂ = 34.0 kJ/mol

How much energy is required to change the temperature of 2.00 g of aluminum from 20.0°C to 25.0°C? The specific heat of aluminum is 0.902 J/g°C.

PROPERTIES OF GASES

What is the mass of a 84.50 L sample of helium (MM=4.00 g/mol) measured at 20.0°C and 700. mmHg?

$$PV = NRT$$
 $PV = \frac{m}{MM}$
 $PV = \frac{m}{MM} \cdot RT$
 $PV = \frac{m}{MM}$

A balloon with a volume of 2.50 L at 20.0°C and 745 mmHg would have what volume at STP?

$$V: 250L$$
 $T: 209243$
 $P: 745 mmH$
 $V_2: P_1 V_1 T_2 = \frac{P_2 V_2}{T_1}$
 $V_2: P_1 V_1 T_2 = \frac{2.50(745)(273)}{293(760)} = \boxed{2.28 L}$

Below is initial rate date for the reaction $A + B \rightarrow 2C$

[A]	[B]	Rate (mol/(L*s)
0.40	0.10	3.6×10^3
0.20	0.10	1.8×10^{3}
0.20	0.50	4.5×10^3

Write the rate law for the above reaction. $rati = K[A][B]^2$

Calculate the value of the rate constant, k, with appropriate units 2.25 x10⁵ M².5

Calculate the value of the rate constant, k, with appropriate this
$$\frac{1}{1.5} \times 10^{3} = 10^{10} \times 10^{10$$

EQUILIBRIUM

Consider the following reaction: $NH_4^+(aq) + NO_2^-(aq) \leftrightarrow N_2(g) + 2 H_2O(l)$ At 400 K, the 1.0 L reaction vessel is found to contain 1.55 mol NH₄⁺, 0.912 mol NO₂⁻, and 3.20 mol H₂O. Given the equilibrium constant = 39.5, calculate the concentration of the N_2 .

$$NH_{11}^{-1}(1_{12}) - NO_{2}^{-1}(1_{1}) = N_{2}(1_{1}) - 2H_{2}(1_{1})$$

$$- X - X - X - X - X$$

$$39.5 = \frac{X}{(1.55 - X)(0.9.2 - X)}$$

$$39.5 \times \frac{1.413}{-1.55} - 1.55 \times -0.912 \times + X^{2} = X$$

$$39.5 \times \frac{1.413}{-1.55} - 1.55 \times -0.912 \times + X^{2} = X$$

$$39.5 \times \frac{1.413}{-1.55} - 1.55 \times -0.912 \times + X^{2} = X$$

$$39.5 \times \frac{1.413}{-1.55} - 1.55 \times -0.912 \times + X^{2} = X$$

$$39.5 \times \frac{1.413}{-1.55} - 1.55 \times -0.912 \times + X^{2} = X$$

$$39.5 \times \frac{1.413}{-1.55} - 1.55 \times -0.912 \times + X^{2} = X$$

$$39.5 \times \frac{1.413}{-1.55} - 1.55 \times -0.912 \times + X^{2} = X$$

$$39.5 \times \frac{1.413}{-1.55} - 1.55 \times -0.912 \times + X^{2} = X$$

$$39.5 \times \frac{1.413}{-1.55} - 1.55 \times -0.912 \times + X^{2} = X$$

$$39.5 \times \frac{1.413}{-1.55} - 1.55 \times -0.912 \times + X^{2} = X$$

$$39.5 \times \frac{1.413}{-1.55} - 1.55 \times -0.912 \times + X^{2} = X$$

$$39.5 \times \frac{1.413}{-1.55} - 1.55 \times -0.912 \times + X^{2} = X$$

$$39.5 \times \frac{1.413}{-1.55} - 1.55 \times -0.912 \times + X^{2} = X$$

$$39.5 \times \frac{1.413}{-1.55} - 1.55 \times -0.912 \times + X^{2} = X$$

$$39.5 \times \frac{1.413}{-1.55} - 1.55 \times -0.912 \times + X^{2} = X$$

$$39.5 \times \frac{1.413}{-1.55} - 1.55 \times -0.912 \times + X^{2} = X$$

$$39.5 \times \frac{1.413}{-1.55} - 1.55 \times -0.912 \times + X^{2} = X$$

$$39.5 \times \frac{1.413}{-1.55} - 1.55 \times -0.912 \times + X^{2} = X$$

$$39.5 \times \frac{1.413}{-1.55} - 1.55 \times -0.912 \times + X^{2} = X$$

$$39.5 \times \frac{1.413}{-1.55} - 1.55 \times -0.912 \times + X^{2} = X$$

$$39.5 \times \frac{1.413}{-1.55} - 1.55 \times -0.912 \times + X^{2} = X$$

$$39.5 \times \frac{1.413}{-1.55} - 1.55 \times -0.912 \times + X^{2} = X$$

$$39.5 \times \frac{1.413}{-1.55} - 1.55 \times -0.912 \times + X^{2} = X$$

$$39.5 \times \frac{1.413}{-1.55} - 1.55 \times -0.912 \times + X^{2} = X$$

$$39.5 \times \frac{1.413}{-1.55} - 1.55 \times -0.912 \times + X^{2} = X$$

$$39.5 \times \frac{1.413}{-1.55} - 1.55 \times -0.912 \times + X^{2} = X$$

$$39.5 \times \frac{1.413}{-1.55} - 1.55 \times -0.912 \times + X^{2} = X$$

$$39.5 \times \frac{1.413}{-1.55} - 1.55 \times -0.912 \times + X^{2} = X$$

$$39.5 \times \frac{1.413}{-1.55} - 1.55 \times -0.912 \times + X^{2} = X$$

$$39.5 \times \frac{1.413}{-1.55} - 1.55 \times -0.912 \times + X^{2} = X$$

$$39.5 \times \frac{1.413}{-1.55} - 1.55 \times -0.912 \times + X^{2} = X$$

At 900 K, Keq for the reaction below is 0.64. You start with 0.10 M CO₂ & 0.10 M H₂. What are the concentrations of all species at equilibrium?

Consider the gaseous equilibrium: $2 \text{ CCl}_4(g) + O_2(g) \leftrightarrow 2 \text{ COCl}_2(g) + 2 \text{ Cl}_2(g) \Delta H = +35 \text{ kJ}$ Predict the effect each change would have on the equilibrium position of the above reaction.

	CCl ₄	O ₂	COCl2	Cl ₂		
Add CCl ₄	T	7	1	1		
Remove Cl ₂	4	1	1	1		
Add COCl ₂	1	1	1	4		
Increase Temp	1	4	1	个		
Reduce Container Volume	7	î	1	T		
Add a Catalyst						
Remove O ₂	^	1	↓	1		
Add He to Increase Pressure						
I mert gases have no effect.						

ACIDS AND BASES

Acetic Acid is a weak acid, with a ka of 1.8 x 10⁻⁵.

Write the dissociation equation for acetic acid.

Calculate the pOH of a 0.250 M acetic acid

If 20.0 mL of the 0.250 M acetic acid was used to neutralize 14.0 mL of NaOH:

How many moles of NaOH were in the flask to begin with?

What is the concentration of the NaOH used to neutralize the 0.250 M acetic acid?

Fill in the chart

I III III tile cliait.				
[H ⁺]	[OH-]	pH	рОН	Acid/Base
5.6 x 10 ⁻⁴	1.78×10-11	3.25	10 75	ALID
0.0251	398712 -13	1.60	12.4	ALID
1.41 X10-10	7.1 x 10 ⁻⁵	9.85	4,15	RASE
1.78 410-9	5.62×10-6	8.75	5.25	BASE

ATOMIC THEORY

Identify the # of protons, neutrons, and electrons in the following atoms:

$$^{31}P$$
 $p=_{15}$ $n=_{16}$ $e=_{15}$

$$^{39}\text{Ca}^{2+}$$
 p= 29 n= 19 e= 18

128
Te4- p= 52 n= 26 e= 56

Write the complete symbol for the atoms which have the following # of p, n, & e's:

p= 26 n= 30 e= 26

p= 23 n= 28 e= 18

p= 80 n= 120 e= 79

$$\begin{array}{c}
\text{So} \tilde{r} \\
\text{2u} \\
\text{Fe} \\
\text{23}
\end{array}$$

Write the entire electronic configuration for the following:

boron:
$$15^{2} 25^{2} 29^{1}$$

magnesium: $15^{2} 25^{2} 29^{6} 35^{2}$

Use the short-cut method to write the following electronic configurations:

Give the quantum numbers for the last electron placed:

technetium: 5,1, 1, 1, 1,

selenium: 4,1,-1, +1

francium: $\frac{1}{2}$, $\frac{1}{2}$

tungsten: 5, 2, 1, -1/2

How much energy is contained in a photon of green light? (frequency is 2.05 x 1014 Hz?) $E = h \cdot 0 = \frac{6.626 \times 10^{-344}}{2.25 \times 10^{14}} = \frac{11.36 \times 10^{-19}}{11.36 \times 10^{-19}}$

NUCLEAR

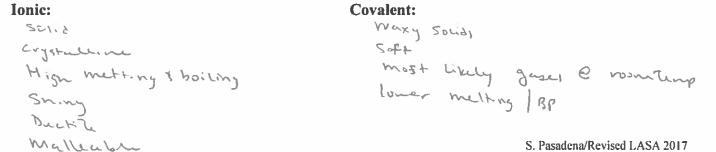
Strontium-90 is a hazardous isotope present in the fallout from nuclear explosions. If 1,00 gram of strontium-90 diminishes to 0.786 gram in 10 years, as measured by its activity, what is the half-life of strontium-90?

Charcoal retrieved from the site of Stonehenge in England has a carbon-14 activity 62.0% that of carbon-14 in living plants. Assuming that the abundance of carbon-14 in the atmosphere has remained more or less constant for the past few thousand years, how old is the charcoal? The half-life of carbon-14 is 5730 years.

Write the "isotopic symbols" for:

log (100) 1 5730 = t t. [3950 yrs

BONDING


A _ | on re_ bond is formed when a positive ion and a negative ion come together.

The metal will (gain /lose) electrons, giving it a (positive / negative) charge. The nonmetal will (gain / lose) electrons, giving it a (positive / negative) charge.

Determine how many electrons were transferred to make the following ionic compounds:

How do you distinguish the difference between an ionic bond and a covalent bond?

List the general properties of:

LEWIS STRUCTURES AND VSEPR

Draw the Lewis Structure for the following substances using VSEPR Theory and identify the molecular geometry.

Ca ²⁺	[:0 NO ₃] -	PCIs CILIT
C ₂ H ₂ H - C= C - H	S ²⁻	NH ₃
SO ₄ ² -	SO₂	CaH2 [H:][Ca]2"[H:]

IMFs

Indicate all forces (IMFs, Ionic Bonds, or Metallic bonds) holding the following substances together:

NH3 H-B-2 D-D LDF	Kr Metulic	HCI B-D LDF	F ₂ LBF	KMnO ₄	NaCl	SO ₂ D-D LDF
CO ₂	C_3H_8	CH ₄	CH₃Cl	HF	C ₆ H ₆	NO
LDF	LDF	LDE	50€ D-D	DO H-Bonz	LDF	ror DD

SATURATION

Identify the difference between saturated, unsaturated, and supersaturated.

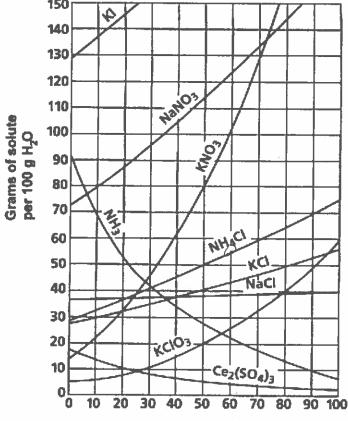
Super - contains more
discoved solute them
Saturated

Use the reference table below.

S. Pasadena/Revised LASA 2017

How much water is needed to dissolve
$$46.6 \text{ g of SO}_2$$
 at 28°C? Nor on the second $\frac{4^{\circ} \cdot \text{lo}}{\text{c}}$ = 15 needed.

What temperature would be required to get 71.0 g of KCl to dissolve in 156 g of water?


$$\frac{71}{156} = \frac{x}{150}$$
 45.5 5

Based on what you've learned in class about soda & fish, do gases behave the same as or different than solids when it comes to solubility & temperature? Take a look at your graph. SO2, NH3, and HCl are all gases. How do these solubilty curves differ from the others?

NO - solubility decreases for Jaces with an increase in

What is the percent KClO₃ in a solution that is saturated at 61°C? 21.3°75

~ Zty +1009 tho 150

Temperature (°C)