

Unit 1 Review

WART TOWARDS NOSE

2. Why is safety important in the lab?

FOR EVERYONE'S WELL DEING

- 3. True/False) Acid should always be diluted by adding water to large volumes of acid and stirring quickly. WATER ADD ACID
- 4. Three different people weigh a standard mass on the same balance. Each person records a mass of 3.40g. The accepted mass is 9.2 g. This demonstrates-

A. accuracy and precision C. accuracy but not precision

- (B.) precision but not accuracy D. neither accuracy nor precision
- 5. Convert to scientific notation. Remember significant figures.

1890 g 1.19 KIO 5 98,200 mg 7.82 x104 56280 mi 5,628 x10 6 km 6 × 10 ° × ~

- 0.00134 cm 1.34 x10 cm - 0.000573 mm _ - 5.7-3 × 10 -4 -0.00000005 m - 5 x 10 - 8 m - 190000000 nm - 1.9 x /0 8
- 6. Convert to standard notation. Remember significant figures.

4.78 x 10-3 km 0.00478 Km

5.50 x 109 mi 5,500,000 m.

-9.4 x 105 g - 940000 g

8.32 x 10-4 mm 0.000 % 32 mm

7. How many significant figures are in the following values?

a) 0.0001 1 b) 4009 4 c) 100.00 5 d) 3400 2 e) 0.0501 3

8. Perform the following calculations and report your answer using the correct number of significant figures:

a) 0.001 + 45.6 45.6

b) 4008 + 34.99 4043 c) 500.0 - 12.13 48 7.9

Use the following conversion factors to complete these problems. Report your answer using the correct number of significant figures (Remember: Conversion factors don't affect sig figs)

$$60 s = 1 min$$

$$1 hr = 60 min$$

$$2.2 lbs = 1 kg$$

$$100 \text{ cm} = 1 \text{ m}$$

$$1.000 \text{ m} = 1 \text{ km}$$

1 mile =
$$1760 \text{ yds}$$

$$24 hr = 1 day$$

9. Find the mass in pounds of a 68 kilogram person

10. Find the volume in <u>liters</u> of 3 gallons of soda

11. Find the length of a 100-yard football field in kilometers

12. Calculate the length of a 5-minute passing period in years

13. The whole number that appears before an element or formula in an equation is called a:

14. The whole number that appears next to, but smaller and slightly below, an element or formula in an equation is called a:

15. How many oxygen atoms would be found in one formula unit (molecule) of the following:

16. How many moles of oxygen atoms would be found in one mole of the following:

17. What is the molar mass (gram formula mass) of nitroglycerin? C₃H₅(NO₃)₃?

a.
$$165 \text{ g/mol}$$
 | b. 227 g/mol | c. 309 g/mol | d. 199 g/mol | e. none $3(17.01) \cdot (5 = 1.008) + (3.14.007) + (9.16.00) = 227.094$

18. What is the molar mass (gram formula mass) of sodium phosphate, Na₃PO₄? (Include units)

19. What is the molar mass (gram formula mass) of FeCl₃ • 5H₂O? (Hint: need to add the mass of 5 waters to the mass of FeCl₃, include units)

20. What is Avogadro's number? What does it describe?

21. Lead nitrate, Pb(NO₃)₄, is used for match manufacturing and for making explosives. If 45.8 grams of lead (IV) nitrate, Pb(NO₃)₄, are required to make one case of matches, how many moles are needed? $45.89 \, Pb \, (NO_3)_4 \, \frac{1mol \, Pb \, (NO_3)_4}{455.228} = 10.101 \, mol \, Pb \, (NO_3)_4$

Answer the following questions regarding the following reaction:

$$Cu + 2 AgNO_3 \rightarrow Cu(NO_3)_2 + 2 Ag$$

22. What is the mole ratio of copper, Cu, metal to silver metal, Ag, in the above reaction?

23. If 5.0 moles of copper are reacted with excess silver nitrate AgNO₃, how many moles of silver are produced?

24. If 3.10 grams of copper nitrate, Cu(NO₃), have been produced, how many grams of silver nitrate, AgNO₃, must have reacted?

25. If 4.00 grams of silver nitrate, AgNO₃, react with excess copper metal, how many formula units of copper nitrate, Cu(NO₃), are produced?

a. How many atoms of oxygen are produced?

26. What mass of carbon dioxide, CO₂, will be formed if 50.0g of C₃H₂ (propane) gas are burned in in excess of pure oxygen at STP?

$$X_9$$
 $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$
 $Y_{44.109}$
 $Y_{44.01}$
 $Y_{132.035}$

$$\frac{50.09}{44.105} = \frac{\times 6}{152.02}$$

$$\frac{\times 150.9}{152.02}$$

$$\frac{\times 150.9}{44.109} = \frac{\times 6}{100} = \frac{1509}{100} = \frac{$$

how much carbon dioxide was produced?

28. Classify the following reaction types.

d.
$$C_2H_4 + 3O_2 \rightarrow 2CO_2 + 2H_2O$$
 comb.

e.
$$K_2S \rightarrow 2K + S$$

g.
$$3Mg + 2AlBr_3 \rightarrow 3MgBr_2 + 2Al$$
 54

h.
$$2C_2H_6O + 9O_2 \rightarrow 4CO_2 + 12H_2O$$